ATAS METSTAR DUCTILE IRON OPTIMIZER MODULE

Traditionally, foundries add the same amount of Mg-alloy to every treatment, e.g. 1.5%. However, the active magnesium content might vary depending on the amount of oxygen, nitrogen and sulphur in the base iron as well as its nucleation level.

A spectrometer analysis shows the total amount of Mg regardless of how it is available in the iron. The total amount includes dissolved, active Mg as well as Mg combined as oxides, sulphate, nitrides, silicates, etc. If the same amount of Mg-alloy is added to each treatment, then the amount of active Mg might vary although the spectrometer shows the same amount of Mg e.g. 0.04%. This leads to variations in nodularity, shrinkage tendency and other casting defects that cannot be detected by spectrometer analysis.

ATAS Ductile Iron Optimizer solves the problem by combining thermal and chemical analysis to calculate optimal additions of magnesium alloy for a given base iron.

The calculation of the additions is based on the:

· Evaluated oxygen content from ATAS MetStar

- · Silica level in base iron
- Content of Sulphur in base iron
- Treatment temperature
- Ladle/batch size
- Target Magnesium content

1000,0°C	Ş	X		
€ EN-GJS-400-Base	Prepare	Sampling	Results	Actions
	S 0,012 % Si 1,51 % P 0,02 %	Treated weight Treatment temp Target Mg	1000 Kg b. 1500 °C 0,042 %	
		\checkmark		
	MgAlloy FeSi-Cover	12,4 kg FeSiN 0,0 kg FeSi	Ag Oxygen High	
	Steel Scrap Cover	2,0 kg Steel	chips CTL	
	Inoculation	2,0 kg Inocu	ilant-X 3,70 %	
			Ok	
	ACEL	DYN INOC	DUCT	\bigcirc

The first step is to set the process type, sandwich/Tundish or cored wire. ATAS MetStar has possibility to automatically connect to some of cored wire machines on a market. Next step is to set the treatment data, default ladle/batch weight and normal treatment temperature. These numbers could be changed directly in the production interface in order to have the real values. The following three materials, FeSi, Steelscrap and addition of inoculant have set values in percent and will be calculated to fit the treated melt weight. Treatment chemistry is set by defining the target Mg and Sulphur after treatment. Both of these values have a strong influence on the calculated amount of FeSiMg material. Maximum Sulphur level is set in order to give a warning to the operators if they by mistake work with higher Sulphur levels.

MENU FOR DUCTILE IRON OPTIMIZER

GJS-400)- <mark>B</mark> ase		Ductile	e Iron Base	~						
operties	Coefficie	ents Chemica	Data	ACEL Correc	tion	☑ Ductile Ir	on Optimiz	er U	Jser Defined		
Process Ty	уре		reatment Dat	a			Treatmen	t Chemistry			Preconditioner
Sandwich/Tundish Treated metal Orred Wire FeSi-Cover ma SteelScrap-Co Addition of in		Treated metal weig Normal treatment FeSi-Cover materia	iht temperature Il naterial	1030 H 1430 0,2 9	Kg Ta °C Ta % M	Target Magnesium level after treatment 0,04 Target Sulfur level after treatment 0,01 Maximum Sulfur level in base iron 0,012			% Use RE-Alloy % %		
		Addition of inocul	int	0,2	%						
		Addition of inocul	ant	0,2	%	Ма	terials				
MgAl	lloy	Addition of inocul	ant	FeSi-Co	%	Ma Steel	terials Scrap Cov	er			
MgAI FeSiMg	lloy ~	Addition of inocul Inocul Barinoc75	ant ant	FeSi-Co	%	Ma Steel	terials Scrap Covi w Mn	er			
MgAI FeSiMg Element Por	lloy ~ tion Yield	Addition of inocul Barinoc75 Element Port	ant on Yield	FeSi-Cc	% % over ~	Ma Steel Steel Lc Elemen	terials Scrap Cov w Mn Portion Yi	er V ield			
MgAl FeSiMg Element Por Fe 45,	lloy v tion Yield ,6 100	Addition of inocul Barinoc75 Element Port Si 75,	ant on Yield i 98	FeSi-Co	wer ver	Ma Steel Lo Elemen C	terials Scrap Cove w Mn Portion Yi 0 1	er V ield			
MgAl FeSiMg Element Por Fe 45, Si 47	tion Yield ,6 100 95	Addition of inocul Barinoc75 Element Port Si 75, Ca 1,33	ant on Yield i 98 y 98	FeSi-Co	wer	Ma Steel Steel Lc Elemen C Si	terials Scrap Cove w Mn Portion Yi 0 1 0,2 9	er v ield 00 05			
MgAl FeSiMg Element Por Fe 45, Si 47 Mg 5	Iloy tion Yield .6 100 .95 .3 72 .02	Addition of inocul Barinoc75 Element Port Si 75, Ca 1,3 Ba 2,6	ant on Yield i 98 y 98 y 98 y 98 y 98	FeSi-Co	over vover	Ma Steel Lc Steel Lc Si Si Si Si	terials Scrap Covi w Mn Portion Yi 0 1 0,2 <u>9</u> 0 1	er ield 00 05 00 00			
MgAl FeSiMg Element Por Fe 45, Si 47 Mg 5,8 Ca 1	Iloy tion Yield ,6 100 95 3 72 99 5 09	Addition of inocul Barinoc75 Element Port Si 75, Ca 1,3 Ba 2,6 Fe 20,	ant on Yield i 98 7 98 4 99 19 100	FeSi-Cc	over vover	Ma Steel Steel Lc Elemen C Si Mn S Ma	terials Scrap Covi w Mn Portion Yi 0,2 9 0,2 1 0,1 0,1 0,1	er ield 00 05 00 00 00 00 00			
MgAl FeSiMg Element, Por Fe 45, Si 47 Mg 5,8 Ca 1 Al 0,6	Illoy tion Yield ,6 100 95 3 72 99 5 98	Addition of inocul Barinoc75 Element Port Si 75; Ca 1,3; Ba 2,6 Fe 20,	ant on Yield 98 99 99 100	0,2 s	over viion Yield	Ma Steel Steel Lc Elemen C Si Mn S Mg Ni	terials Scrap Covi w Mn Portion Yi 0 1 0,2 9 0 1 0 1 0 1	er v ield 00 05 00 00 00 00 00 00 00 00			
MgAl FeSiMg Element, Por Fe 45, Si 47 Mg 5,8 Ca 1 Al 0,6	lloy tion Yield .6 100 .95 .3 72 .99 .5 98	Addition of inocul Barinoc75 Element Port Si 75, Ca 1,3 Ba 2,6 Fe 20,	ant on Yield 98 99 99 99 100		over ver	Ma Steel Steel Lc Elemen C Si Mn S Mg Ni Fe	terials Scrap Cov w Mn Portion Yi 0 1 0,2 9 0 1 0 1 0 1 0 1 0 1 0 1 9 8 1	er v ield 00 05 00 00 00 00 00 00 00 00			

Benefits of using Ductile Iron Optimizer:

- \cdot Stabilization and optimization of the magnesium treatment process.
- Calculation of amount of magnesium based on all available information from ATAS MetStar and spectrometer which reduces magnesium consumption.
- If cored wire machine connection to ATAS MetStar is used, then full automatization is available.
- \cdot Less variations, less defect, less problems
- Better melt quality = reduced scrap rate